How do fiber laser engravers work?
When a fibre laser meets an object it evaporates the surface material to expose deeper material, essentially “carving” by chemical and physical changes. These changes are caused by the light energy (photons) reacting in the target area.
Fibre lasers possess a high electro-optical conversion efficiency, in layman’s terms this means they convert more of the energy to light (compared to CO2). In reality, this means fibre laser systems require less power to effect a material, resulting in a low power consumption for a fibre laser marking machine.
Operating at the 1,064nm wavelength, they are very well suited to metals, but can also operate on a much wider array of materials. This is why they are the most common choice for traceability marks such as barcodes, QR codes and text. Plus, their use for other graphics on things like personalised items, switches, phones, jewellery, becomes more popular day-by-day.
Types of Fiber Lasers
There are two common types of fibre laser you will find offered from manufacturers, we offer both types to suit the users budget. The main difference between these types of technology is the variety of pulse width and frequency.
Q-Switched
These used to be the most commonly found type of fiber laser source, it is also the cheapest. They are typically not as efficient nor do they possess as wide a range of pulse modulations. In turn, this means they are less flexible than a MOPA laser and are much more prone to deforming different materials.
MOPA
A MOPA laser is much more flexible, they have become far more popular and widely available, but not all MOPA systems are the same. Good MOPA systems will have a wide range of pulse width and frequency adjustments available they can suit more materials and are less prone to creating unwanted deformations once setup correctly. However, as mentioned, MOPA laser sources are quite varied in themselves, with both quality and modulation versatility differing between manufacturers. Unfortunately, there are now many MOPA systems on the market with only one or two Pulse Width’s and PRF0, they will be marketed as suitable for metal, but won’t be particularly good at it as you would realistically want upwards of 5 Pulse Width’s to work effectively (our own OEM systems have 17).
All Lotus Laser Systems’ fiber lasers incorporate the MOPA technology, and each have the ability to create very short duration pulses (and therefore lower pulse energies), reducing the heat imparted to the material. This reduction in the heat affected zone (HAZ) provides advantages when marking metal and plastic such as less burning at the edges, and a more homogeneous, higher contrast marking.